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Abstract

Generative art is an enduring discipline in the field of computer science that has
traditionally taken on a wide variety of creative implementations. But if we view the
current landscape of generative art without a discerning eye, the scope of techniques
and methods may look quite flat – only diffusion models, LLMs, and their LoRAs
to be seen. In this work we aim to showcase a variation of an older technique for
image generation that can create striking visual art without relying on training data,
exhaustive computation, or narrowly defined priors. Specifically, we revisit the
CPPN-NEAT algorithm, and retool it to be more amenable to current generative
model workflows. Instead of evolutionary augmentation, we generate random
Watts-Strogatz graphs, convert them to neural fields, and generate the resulting
image at an arbitrary resolution. We obtain high-quality samples by using an off-
the-shelf VLM to make pairwise selections between generated examples. Images
that survive multiple rounds are selected for final human review. This automated
procedure is simple, and allows us to quickly and easily generate 12000px x
12000px images on a consumer desktop machine, in a style that is distinct from
publicly-available image generation models.

1 Introduction

There has been a recent surge of interest in generative art due to the incredible capabilities of large
language models [Achiam et al., 2023, Bai et al., 2022, Dubey et al., 2024] as well as frontier
text-to-image generation models [Saharia et al., 2022, Peebles and Xie, 2023, Rombach et al., 2022].
However, its not yet clear to what extent these new generative models can be used to augment, rather
than replace artistic workflows. It is straightforward to simply prompt for a style of painting, or
for verse, or sound, but the frontier of generative art is wide open when it comes to generation
beyond prompting. In the spirit of building upon the impressive capabilities of large generative
models, this work attempts to revisit an older technique, CPPN-NEAT [Stanley, 2007, 2006, Ha,
2016], and augment it to be faster, scalable, and ultimately more practically expressive. In short,
this work proposes a pipeline for automatically creating high quality generative art with minimal
human supervision. This pipeline comprises three stages: initialization of the generating function
as a random Watts-Strogatz (WS) neural field, generation of output images, and selection of a new
generating function. The backbone of this method is a 2D neural field [Xie et al., 2022] that is used
to generate a single image – that when randomly initialized, reflects the underlying architecture of
the generator itself.
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Figure 1: Overview of generation pipeline: activation selection, WS graph generation, converstion to
neural field, to image generation.

2 Related Work

2.1 CPPN-NEAT

Compositional Pattern-Producing Networks (CPPNs) are neural networks that generate patterns
by mapping a set of coordinates to colors or intensities, enabling the creation of complex and
geometric structures. [Stanley, 2007, 2006] introduced CPPNs in conjunction with NeuroEvolution
of Augmenting Topologies (NEAT), an evolutionary algorithm that evolves both the weights and
connection patterns of neural networks. CPPN-NEAT generates arbitrarily complex patterns through
its node activations like sigmoid, tanh, gaussian, affine, etc. Evolutionary [Secretan
et al., 2008], and generative versions [Ha, 2016] of this method have been explored, but still require
manual tuning of the CPPN parameters to get appealing outputs.

2.2 Neural fields

Also known as implicit neural representation functions, neural fields generalize CPPNs to real-valued
output assignments to a coordinate space that can represent data such as physical quantities [Li et al.,
2023], images [Sitzmann et al., 2020], and 3D shapes [Mildenhall et al., 2021] as continuous functions
parameterized by neural networks. Instead of discrete representations like pixels or meshes, neural
fields map spatial coordinates directly to signal values, enabling high-resolution and continuous
representations. We make use of the neural field paradigm to infer pixel values, but also alpha and
gamma values.

3 Method

In this work we begin with observing that generating images with randomly initialized neural fields
can create interesting outputs by varying the activation functions [Ha, 2016], even with a small fixed
architecture. We build on this approach by increasing the complexity of the generator, using a random
Watts-Strogatz graph [Xie et al., 2019] with a large set of possible activation functions instead of a
small MLP. This approach yields increased diversity, however, there exist a nontrivial set of graph
topologies that yield images with extreme entropy (blank or noisy). This means that naively using
this algorithm will result in extremely similar artwork, or else images where there is too little or too
much information to be interesting. To acquire a more consistent set of interesting outputs without
manually sifting through thousands of candidates, we design a semi-closed loop approach that uses a
pretrained VLM [Liu et al., 2023, Li et al., 2024] to select the most interesting image from a batch of
generations. The VLM also has access to a set of ground truth high-quality images and corresponding
activation sets to use as references. After selecting the best image, the VLM is then prompted to
generate a new set of activations that are applied in topological order to the next WS graph. In some
sense the VLM is acting as an agent, trying to create interesting artwork with neural fields. Through
this approach, images can go through K rounds of refinement, where K is a hyperparameter, before
being chosen as a candidate for final human review. Additional samples can be found in the appendix.
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