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Abstract

The recent explosion of generative AI-Music systems has raised numerous concerns
over data copyright, licensing music from musicians, and the conflict between open-
source AI and large prestige companies. As these issues highlight the need for
publicly available, copyright-free musical data, we present PDMX: a large-scale
open-source dataset of over 250K public domain MusicXML scores collected from
the score-sharing forum MuseScore, making it the largest available copyright-free
symbolic music dataset to our knowledge. PDMX additionally includes a wealth
of both tag and user interaction metadata, allowing us to efficiently analyze the
dataset and filter for high quality user-generated scores. We conduct multitrack
music generation experiments evaluating how different representative subsets of
PDMX lead to different behaviors in downstream models, and how user-rating
statistics can be used as an effective measure of data quality.

1 Introduction
The current explosion in generative music systems (1; 2; 3; 4; 5; 6) has increased debate over the
legality of training on unlicenced data, and in particular, how such models may replace artists and
interact with modern copyright law (7; 8; 9; 10; 11). Such concerns over replacing artists have
renewed interest in symbolic music processing, which allows for greater artist-in-the-loop interaction
(5). While a natural alternative to the intense music licensing process is to train on public domain data,
this remains complex, as many symbolic music datasets fail to adequately vet for copyrighted music
(12; 13; 14; 15; 16), let alone explicitly filter for public domain works (17; 18; 19) (see App. A.1).

We thus introduce PDMX: a large-scale dataset of over 250K Public Domain MusicXML files, the
largest publicly available, copyright-free MusicXML dataset in existence to our knowledge. PDMX
includes genre, tag, description, and popularity metadata for every file. As a test bed, we use an
unconditional multitrack music generation task to understand how metadata-based data filtering
affects downstream modeling, highlighting that the user rating data in PDMX can be a powerful
measure of data quality. PDMX is released on Zenodo1 under a CC-BY license as a fully commercially
viable dataset for symbolic music processing.

2 Dataset
PDMX was created using data scraped from the online score-sharing forum MuseScore2 (20),
explored further in App. A.2. We additionally scraped metadata for each score, which includes
both descriptions of the score (i.e. composer, genre), community content in the form of ratings and
comments, and most importantly the overall license for each score. We then selected songs with
specifically Public Domain Mark or CC-0 licenses. In total, our initial scrape yielded 254,077 files,
the largest dataset of MusicXML-like data to our knowledge, with a total 6,250.37 hours of music
(see App. A.6).

1https://zenodo.org/records/14004826
2https://musescore.com

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://zenodo.org/records/14004826
https://musescore.com/


Two issues arise from the crowd-sourced nature of the MuseScore platform: we cannot assume that
all songs in the base PDMX dataset are either high quality or unique. To address data quality, we
employ the metadata’s “rating” attribute, which represents the average of users’ five-star ratings
(while a rating of zero indicates a song is unrated). An analysis of ratings can be found in Sec A.3.
Meanwhile, because heavy duplication within a dataset can introduce bias towards high frequency
data points (21), for each song, we encode a combination of title and artist using a pre-trained text
embedding model, Sentence-BERT (22), to deduplicate and ensure uniqueness. Furthermore, for
each group of duplicates, we include the best unique instrumentations (e.g. solo piano vs. string
quartet) and arrangements (e.g. easy vs. advanced versions), for which the underlying algorithm is
detailed in App. A.4.

Given the metadata and filtering/deduplication process, we thus focus on four main subsets of the
data: (1) All (A): The entirety of PDMX. (2) Deduplicated (D): The collection of each song’s best
unique arrangements. (3) Rated (R): Songs with non-zero ratings. (4) Rated and Deduplicated
(R∩D): The intersection of the previous two subsets.

3 Experiments
In order to demo PDMX as a dataset for symbolic music processing, we follow previous work (3)
and focus on an unconditional multitrack music generation task, explained further in App. A.8. We
focus on our four main subsets of PDMX (detailed in Tab. 2), as well as a Random subset of songs
sampled from the full dataset at the size of the R∩D subset. We additionally reserve the top 50% (in
terms of rating, specifically >4.74 stars) from the R∩D subset as a potentially “high quality" subset
for fine-tuning. In this setup, we seek to answer two questions: (1) Do data quality and deduplication
affect symbolic modeling? and (2) Does fine-tuning on small but high quality data meaningfully
change behavior? We report objective results in App. A.9. Examples can be found in our demo.3
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Figure 1: Results from the subjective listening test. For each subset and rating axis, the mean opinion
scores of the base and fine-tuned models are displayed on the left and right, respectively. The R∩D
(red) subset performs the best, and fine-tuning on >50% rated data improves richness and quality.

In Fig. 1, we report the mean opinion scores along three axes for each model from a subjective
listening test, elaborated on in App. A.10. Comparing different modeling subsets (ignoring fine-
tuning), we observe consistent musical correctness across all subsets, but we also find that the R∩D
subset (i.e. our most filtered subset, in red), consistently displays the highest scores for both richness
and quality. Regarding fine-tuning, we find that this process increases richness in all models, and
improves quality in three (D, R∩D, Random), with a particularly strong effect on the Random
model. These results together demonstrate our deduplication and filtering strategies’ capacity for
significant dataset distillation (as the R∩D model performs best despite seeing only 15% of the data).

4 Conclusion
We present PDMX: the largest dataset of public domain MusicXML files to our knowledge, showing
promising results for unconditional multitrack generation that indicate improved performance when
filtering for high-quality scores. In the future, we hope to investigate ways to use the large dataset as
an effective pretraining mechanism for symbolic generation models, and to utilize PDMX’s wealth of
extra performance directive annotations for fine-grained time-located text-to-music generation. We
also plan to explore PDMX’s capacity for discriminative MIR tasks.

3https://pnlong.github.io/PDMX.demo
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A Appendix

A.1 Related Works

Table 1: Summary of Existing Datasets. PDMX is the largest MusicXML dataset, competitive with
existing large scale MIDI datasets, and the largest dataset of public domain data.

Dataset Format Hours Size Multitrack License

Lakh MIDI (LMD) (17) MIDI >9,000 174,533 ✓ CC-BY 4.0†

SymphonyNet (12) MIDI >3,200 46,359 ✓
MAESTRO (18) MIDI 201.21 1,282 CC BY-NC-SA 4.0
Wikifonia Lead Sheet Dataset (13) MusicXML 198.40 6,405
POP909 (14) MIDI 60.00 909
EMOPIA (19) MIDI 11.0 1,078 CC BY-NC-SA 4.0
MMD (15) MIDI - 1,524,557
MetaMidi (16) MIDI - 612,088 ✓

PDMX MusicXML 6,250 254,077 ✓ CC-0 / Public Domain

† While LMD is released under CC-BY 4.0, it has been publically documented that many copyrighted works exist in the dataset (5).

There exist a number of publicly available datasets for modeling symbolic music (see Tab. 1), with a
wide variety of licensing scenarios and sizes. Most datasets, such as the moderate-sized SymphonyNet
(12), the large MMD (15) and MetaMidi (16), and the smaller Wikifonia (13) and POP909 (14)
datasets offer no clear licensing information, being thus unsafe for copyright issues. While some
existing datasets do have explicit licenses, these are either specifically non-commercial, such as
for MAESTRO (18) and EMOPIA(19), or have documented licensing violations as in LMD (17).
Additionally, few large datasets contain diverse multitrack music, and fewer still present data in the
MusicXML format, thus ommiting the notational information present in MusicXML but unsupported
in datatypes like MIDI. Unlike past datasets, PDMX is a large-scale set comprised entirely of CC-0 /
Public Domain MusicXML files, containing diverse multitrack symbolic music with song metadata.

A.2 Parsing MuseScore Data

Unlike MIDI, MusicXML files are meant for rendering sheet music as it should be read by a musician
(rather than how it directly sounds), thus containing a wealth of notational information that is common
in western music scores. Existing software capable of parsing these files, namely the Python library
MusPy (23), is not optimized for the task. Given a piece of symbolic music, the resulting MusPy
Music object primarily extracts the note value information, as well as limited metadata like time/key
signatures and tempo markings. However, MusPy fails to parse many MusicXML-specific score
objects, including performance directives (e.g. dynamics, articulations), lyrics, and phrase boundaries,
stripping out such content from the notes themselves into a catchall “annotation" structure.

We design our own data structure, MusicRender, as an extension of the MusPy Music object to
specifically account for these flaws. MusicRender supports expanded functionality for parsing
MusicXML-specific score attributes using multiple of distinct Python objects for each type of non-
note score object (such as rehearsal marks or dynamic text). In particular, MusicRender uses such
annotations, along with a number of heuristics, to parse MusicXML files such that its symbolic
domain outputs reflect the real perceptual rendering of the notes (i.e. how notes should be performed).
For instance, note durations for a slurred section extend to the next note, and accented notes are
louder. Tempo-related annotations, like ritardandos, and volume-related features, like crescendos,
are realized through changes in tempo and velocity.

Similar to MusPy, a MusicRender object supports full data I/O to a number of file types (JSON,
MIDI), MIR modeling representations (e.g. piano-roll, music21 (24)), and programmatic audio
synthesis via Fluidsynth. We thus store PDMX as MusicRender JSON files, which are readily loaded
into Python environments as MusicRender objects with no information loss.

A.3 Data Quality

A past problem in existing symbolic music datasets is overall dataset quality, as very limited works
exist to assess the “quality" of symbolic music, and existing high-quality datasets are much smaller
(14). Due to the crowd-sourced nature of the MuseScore platform, we cannot assume that all songs
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Figure 2: Musical statistics vs. rating percentile in PDMX (specific ratings shown as vertical lines).
Higher-rated songs seem to be more harmonically dynamic (higher PCE, lower SC), yet rating has
little effect on rhythm.

in the base PDMX dataset are of high quality. While we could use various proxies for quality
such as number of views or whether a song has a paywall, we can instead harness MuseScore’s
crowd-sourcing to our benefit. MuseScore allows individual users to rate a song out of five stars,
accessible through the metadata’s “rating” attribute. We can use a song’s five-star rating average as
our metric for data quality.

We refer to the 14,182 rated songs (5.6% of all songs) as the rated subset (with a rating of zero
indicating that a song is unrated). In practice, ratings actually range from 2.83 to 4.98 stars, In Tab. 2,
where we display the Pitch Class Entropy (PCE), Scale Consistency (SC), and Groove Consistency
(GC) (following past work (3; 25; 5)), we see that rated songs display more harmonic variation
(higher PCE, lower SC) than their unrated counterparts, though a song’s rating appears to have little
effect on rhythm. Additionally in Fig. 2, we show these metrics as a function of the rating percentile,
displaying that this trend of increasing PCE/decreasing SC holds as the rating increases.

A.4 Deduplication

Deduplication is an important part of dataset construction, as heavy duplication within a dataset
may bias the dataset towards particular high frequency data points and thus degrade downstream
modeling tasks (21). However, unlike in more traditional domains like text processing (26), string
matching techniques using the textual metadata are insufficient for detecting duplicates in PDMX.
This is because many of the same pieces having different titles, such as “Pachelbel’s Canon in D”
and “Canon by Pachelbel”, despite being the same piece. Additionally, the notion of “duplicate"
is ill-defined in the context of sheet music, as even two scores of the same song may be arranged
differently and for distinct instrumentations.

To address these issue, we first use a pre-trained text embedding model, Sentence-BERT (22), to
encode song titles as fixed dimension embedding vectors. Formally, we embed a song “descriptor”
– a combination of a song’s title, subtitle (if applicable), artist, and composer (if different from the
artist) – to combat the scenario where different artists compose works of the same name. We then
use cosine similarity to compare embedding vectors and scale those values between zero and one to
obtain similarity scores. We set a duplicate threshold of 80%; that is, we cluster a given song with
all other songs ≥80% similar. This threshold was manually verified to capture a reasonable range
of duplicate songs. However, deduplicating by song descriptor alone ignores a variety of possible
different arrangements, all valuable from a music generation perspective.

For each cluster of duplicate songs, we next group by instrumentation. For example, solo piano
arrangements of “Pachelbel’s Canon” fall into separate clusters from their string quartet counterparts.

6



However, within a single instrumentation cluster can exist multiple unique arrangements (e.g. a
beginner versus advanced version). To address this, we use a simple heuristic of total note count
to cluster songs (as note count is an easy proxy for large differences in song arrangement). We set
a uniqueness threshold of 5% (i.e. songs with a >5% difference in note count fall into different
clusters). Like the duplicate threshold, we obtained this value through trial and error, feeling that 5%
well-captured overly similar arrangements. Within each similar note count cluster, we finally select
the “best” arrangement of a song by considering each score’s rating and, in the event of a tie, number
of notes (the more notes, the better). Therefore, while a score could have tens of duplicates when
considering song descriptor alone, within this grouping can exist many unique arrangements.

Using this deduplication strategy, we remove 151,442 songs (nearly 60% of the base dataset), leaving
102,635 unique arrangements remaining as part of the deduplicated subset. Notably, while around
85% of all songs have no duplicates, over 95% of rated songs are unique. Unlike rating, deduplication
appears to have little effect on either harmonic or rhythmic variation.

A.5 Dataset Subsets

Table 2: Subsets of PDMX, including filtering based on deduplication and rating information. We
follow past works (3; 25; 5) and report the average Pitch Class Entropy (PCE), Scale Consistency
(SC), and Groove Consistency (GC) for each subset.

Subset Hours / Size PCE SC (%) GC (%)

A 6,250 / 254K 2.69 ± 0.00 97.12 ± 0.01 93.75 ± 0.01
D 3,756 / 102K 2.77 ± 0.00 95.15 ± 0.02 93.79 ± 0.01
R 1,001 / 14K 2.91 ± 0.00 91.59 ± 0.07 92.59 ± 0.05
R∩D 941 / 13K 2.90 ± 0.00 91.70 ± 0.07 92.65 ± 0.05

Fine-Tuning 595 / 6K 2.95 ± 0.00 90.54 ± 0.11 92.39 ± 0.07

A.6 Analysis

1 10 100
Percent of Songs (%)

Classical
Folk

Soundtrack
Rock
Pop
Jazz

Electronic
Funk/Soul
Religious

World

Subset
All
Deduplicated
Rated
Rated and Deduplicated

Figure 3: Top-10 Genre distribution in PDMX. 67% of songs lack a genre tag. All genres besides the
two most common, classical and folk music, display notably higher frequencies in the rated subsets.

As PDMX is a multitrack dataset, we first analyze the density of tracks (i.e. single instrument parts)
within a given song. Over 90% of songs in PDMX contain less than five tracks, while over half the
dataset consists of solo works. We note that only ≈3% of songs in PDMX have more than five tracks,
possibly due to larger multitrack scores (common in orchestral or marching band repertoires) not in
the public domain. PDMX encompasses 20 different genres, the most common being classical and
folk music (see Fig. 3). More modern genres, like hip-hop and electronic music, are comparatively
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1 10 100
Percent of Songs (%)

Piano
Two Pianos
Piano-Voice
SATB Choir
Four Pianos

Three Pianos
Violin

Five-Part Choral
Piano-Oboe

Organ
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All
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Rated and Deduplicated

Figure 4: Top-10 most common instrumentations in PDMX. Piano arrangements dominate the dataset,
while Piano-Voice arrangements are markedly less frequent in the rated subsets.

much fewer in number, likely due to limited public domain content for more recent works. Although
genre tags are absent from 67% of songs, only 50% of notes lack a genre, suggesting that genre-
labeled works are more dense than unlabelled ones. Additionally, when breaking down the genre
distribution by subset (see Fig. 3), we find that the rated (and subsequently rated and deduplicated)
subsets of PDMX contain a significantly longer “tail" of genres than the full dataset (with ≈40%
coming from non classical/folk genres), denoting a large amount of unrated classical music present
in PDMX. We also analyze the instrumentation of PDMX (see Fig. 4) and observe that the dataset
includes >10K unique instrumentations. Despite a substantial frequency of piano music, PDMX also
contains a notable amount of works for choir and string sections.

A.7 Additional Features

While we have focused on highlighting PDMX’s note-based content and parts of its metadata, we
note that PDMX includes a number of extra features. Regarding metadata, PDMX includes rich
rating and user comment information, enabling work on symbolic music recommendation (27; 28)
and preference modeling. Notably, as PDMX is a MusicXML dataset, it includes 12M time-aligned
performance directives such as tempo text (e.g. adagio), dynamic hairpins (e.g. crescendo), note
articulations (e.g. staccato), and section markings, which are parsed by the MusicRender framework
and may be used both for discriminative tagging tasks, expressive music rendering, and even as
conditions for controllable music generation (5; 29). PDMX also includes over 10M lyric tokens,
opening the door for further research on lyric-to-score and score-to-lyric tasks (30; 31; 32). We plan
to fully release PDMX as 44.1kHz synthetic audio rendered through Fluidsynth, creating a large
corpus for music transcription (33) and audio-domain music generation (6; 29).

A.8 Experimental Setup and Metrics

In this work, we view each score in PDMX as a sequence of notes n = n1, . . . ,nN , from which
our goal is to learn an autoregressive model pθ(ni | n1:i−1) that can generate symbolic music.
To accomplish this, we use the tokenization scheme REMI+ (34), an extension to the REMI input
representation that allows for multitrack music (35). Each note is represented by a tuple of five
variables: beat, position, pitch, duration, instrument. We employ a metrical timing system (i.e. time
is represented in beats rather than seconds).

For all experiments, we use a REMI+ style decoder-only transformer, with 6 layers, 8 attention
heads, and a hidden dimension of 512, totaling at ≈20M parameters. We use an absolute positional
embedding with a maximum sequence length of 1024. We train each model on a single A6000 GPU
for 100K steps with a batch size of 12, learning rate of 5e-4, and the Adam optimizer with default
hyperparameters. For fine-tuning, we employ a smaller learning rate of 5e-5, and only train for 5K
steps.

Following past work (3; 25; 5), we report the PCE, SC, and GC across 1,200 generations per model,
which measure how well the model captures the underlying musical patterns of the data.
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A.9 Objective Metrics

Table 3: Quantitative Results. For all metrics, performance is determined by closeness to the fine-
tuning subset’s statistics.

Subset Fine-Tuned PCE SC (%) GC (%)

A 2.66 ± 0.01 97.65 ± 0.13 93.70 ± 0.11
D 2.66 ± 0.01 96.32 ± 0.16 93.83 ± 0.15
R 2.80 ± 0.01 93.89 ± 0.20 91.83 ± 0.22
R∩D 2.80 ± 0.01 93.32 ± 0.21 91.90 ± 0.21
Random 2.68 ± 0.01 97.57 ± 0.12 93.46 ± 0.12

A ✓ 2.81 ± 0.01 92.42 ± 0.23 90.75 ± 0.25
D ✓ 2.79 ± 0.01 93.17 ± 0.22 90.93 ± 0.24
R ✓ 2.84 ± 0.01 92.77 ± 0.22 90.68 ± 0.24
R∩D ✓ 2.85 ± 0.01 92.51 ± 0.22 90.38 ± 0.26
Random ✓ 2.79 ± 0.01 93.37 ± 0.21 90.83 ± 0.27

In Tab. 3, we observe that between the five base models, those trained on the rated subsets display
greater harmonic and rhythmic diversity than those not, and have the closest statistics to the fine-
tuning subset. However, once all models fine-tuned on the 50% best rated scores, this distinction
goes away, with all five fine-tuned models showing more similar metrics.

A.10 Subjective Listening Test

To measure music quality across our ten models (five base, five fine-tuned), we conducted a listening
test with 12 participants. In the questionnaire, each participant listened to 30 different samples
randomly chosen from a pool of 10 samples per model. Following past work (36), for each sample
users were asked to rate the generation (from 0-100) along three axes:

• Correctness: Is the music free of inharmonious notes, unnatural rhythms, and awkward
phrasing?

• Richness: Is the sample musically / harmonically interesting?
• Quality: Subjectively, how much do you like the generation?

In Fig. 1, we show the average values (top) and violin plots (bottom) for each model along each rating
axis. In comparing different modeling subsets (ignoring fine-tuning), we find that correctness is
consistent across all subsets. For richness and quality however, the R∩D subset (i.e. our most filtered
subset, in red) consistently shows the highest scores, followed by R (green), A (blue), Random
(purple), and D (orange), suggesting that our deduplication strategy is primarily useful for rated songs
(as we pick the highest rated duplicate) rather than unrated (which is chosen at random).

Regarding fine-tuning, we find that this process increases richness in all models, and improves
quality in three (D, R∩D, Random), with a particularly strong effect on the Random (purple) model,
converting it into our second-highest rated in quality overall. There is also a noticeable negative
effect on correctness in the All (blue) model, suggesting that the model may have overfit to overly
simple examples in the full dataset. These results together show the strength of our deduplication and
filtering strategies as a way to perform significant dataset distillation (as the R∩D model performs
best despite seeing only 15% of the data).
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