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Abstract

This paper presents "Object Images," a novel method that represents 3D shapes with
UV-patch structures as 64x64 pixel images, encapsulating geometry and appearance
details. By converting complex 3D shapes into a 2D format, we leverage image
generation models like Diffusion Transformers to produce realistic 3D models
with UV-patches. This patch-based format naturally describes local regions of the
generated object, making editing easier and enhancing the creative design process.

1 Introduction

Generative models for 3D assets face significant challenges due to geometric and semantic irregular-
ities. Unlike 2D images, 3D shapes often involve complex topologies and intricate sub-structures,
making them hard to model using standard approaches. Existing methods [6, 7, 5] often sacrifice
geometric or semantic structures to the data pre-processing, which limits their effectiveness in
applications requiring such structures.

To address these challenges simultaneously, we propose generating 3D shapes as Multi-Chart Geome-
try Images [4], leveraging UV charts in human-modeled 3D assets. This patch-based representation
breaks shapes into smaller, semantically meaningful segments, allowing for easier, targeted editing
and interaction, which is crucial for designing interactive, human-in-the-loop generative AI systems.

Our method transforms mesh geometry into a 12-channel image representation, termed "Object
Images" (omages), which retains both material properties and semantic structures. By using image-
based generative models, this technique supports creating textured 3D meshes with UV maps and
materials, as demonstrated on the ABO dataset [1]. It is also relatively easy to edit afterwards.

2 Method

Our method introduces the Object Image (omage) representation, which encodes a 3D shape as a
set of UV-mapped surface patches that are packed into a regular 2D image. As illustrated in Fig. 1,
this representation preserves both geometric and material information, including albedo, normal,
metalness, and roughness maps, enabling efficient reconstruction of photo-realistic 3D objects. By
rasterizing the geometry and material data into a 12-channel image, we maintain the integrity of the
original 3D structure and support interactive editing.

We utilize the Diffusion Transformer architecture [2] to model the distribution of these omages.
This approach leverages transformers’ ability to handle long-range dependencies and unordered sets,
addressing the challenge of patch-based representation where the spatial arrangement in 2D does not
affect the 3D shape. We first train a model to generate the four geometric channels, followed by a
second stage to generate the remaining material channels, conditioning on the geometry.
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Figure 1: Method overview. Left: We assume the mesh M has patch decomposition {Si}, and has
single-valued uv-map fi that flattens patch Si into the 2D uv-domain. Together with the material
maps, Object Images can represent high-quality photo-realistic object. Right: We train the image
diffusion generative model with Diffusion Transformer. The input noised Object Image, omg, is first
flattened into a sequence before passing into the transformer to predict the clean omg0.

Figure 2: Examples of label-conditioned Omage-64 generation results. The left side displays results
for ‘ottoman’, ‘bed’, ‘exercise equipment’, ‘painting’, ‘lamp’ ‘vanity’, ‘plant pot’, ‘chair’, ‘pillow’
and ‘lamp’. Even at this resolution, thin structures are successfully generated. On the right, a
scene with three objects generated by our method is shown, highlighting our capability in material
generation.

To create omages from 3D assets with UV maps, we employ a UV-atlas repacking method that
handles overlapping regions, out-of-boundary UVs, and excessive patches by merging vertices and
retaining a maximum number of patches. High-resolution omages are then downsampled using
boundary snapping and sparse pooling techniques, ensuring boundary information is preserved while
reducing gaps between patches for efficient model training.

In Fig. 2 we show the label-conditioned generation results of our method trained on the ABO [1]
dataset. After the DiT module generate geometry, we utilize Imagen [3] to generate material maps.

3 Conclusion

In this work, we introduce "Object Images," a multi-channel image representation that encodes poten-
tially topology-complicated 3D objects with both semantic structures and appearance information,
enabling a new approach to 3D generation that supports patch- and part-level edits. However, our
current method has limitations, such as visible seams due to the inability to guarantee seamless patch
fusion and constraints on resolution. In the future, we aim to generate higher-resolution omages that
capture more detailed geometric and appearance details.
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